翻訳と辞書
Words near each other
・ "O" Is for Outlaw
・ "O"-Jung.Ban.Hap.
・ "Ode-to-Napoleon" hexachord
・ "Oh Yeah!" Live
・ "Our Contemporary" regional art exhibition (Leningrad, 1975)
・ "P" Is for Peril
・ "Pimpernel" Smith
・ "Polish death camp" controversy
・ "Pro knigi" ("About books")
・ "Prosopa" Greek Television Awards
・ "Pussy Cats" Starring the Walkmen
・ "Q" Is for Quarry
・ "R" Is for Ricochet
・ "R" The King (2016 film)
・ "Rags" Ragland
・ ! (album)
・ ! (disambiguation)
・ !!
・ !!!
・ !!! (album)
・ !!Destroy-Oh-Boy!!
・ !Action Pact!
・ !Arriba! La Pachanga
・ !Hero
・ !Hero (album)
・ !Kung language
・ !Oka Tokat
・ !PAUS3
・ !T.O.O.H.!
・ !Women Art Revolution


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

symmetric monoidal category : ウィキペディア英語版
symmetric monoidal category
In category theory, a branch of mathematics, a symmetric monoidal category is a braided monoidal category that is maximally symmetric. That is, the braiding operator s_ obeys an additional identity: s_\circ s_=1_.
The classifying space (geometric realization of the nerve) of a symmetric monoidal category is an E_\infty space, so its group completion is an infinite loop space.〔R.W. Thomason, ("Symmetric Monoidal Categories Model all Connective Spectra" ), ''Theory and Applications of Categories'', Vol. 1, No. 5, 1995, pp. 78– 118.〕
==Definition==
A symmetric monoidal category is a monoidal category (''C'', ⊗) such that, for every pair ''A'', ''B'' of objects in ''C'', there is an isomorphism s_: A \otimes B \simeq B \otimes A that is natural in both ''A'' and ''B'' and such that the following diagrams commute:
*The unit coherence:
*:File:symmetric monoidal unit coherence.png
*The associativity coherence:
*:File:symmetric monoidal associativity coherence.png
*The inverse law:
*:File:symmetric monoidal inverse law.png
In the diagrams above, ''a'', ''l'' , ''r'' are the associativity isomorphism, the left unit isomorphism, and the right unit isomorphism respectively.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「symmetric monoidal category」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.